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Shape model for the molecular interpretation of the flexoelectric effect
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A mean-field model for the flexoelectric polarization in nematics is presented, based on a continuous
description of director deformations coupled to the molecular degrees of freedom via surface interactions. In
such a framework, a consistent picture of the flexoelectric effect is obtained, including both dipolar and
quadrupolar contributions, with a realistic account of the molecular characteristics of shape and charge distri-
bution. The method is aimed at establishing a quantitative link between chemical structure and flexoelectric
response. It provides numerical estimates of the effect and its temperature dependence and allows the recog-
nition of the relevant molecular features for its emergence. Application to some representative systems, com-
prising mesogenic molecules and photoisomerizable dopants, is considered; it is shown that simple interpre-
tative schemes can be misleading and a comparison with experimental data is reported.
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I. INTRODUCTION

The nematic phase hasD`h symmetry, and as such it i
incompatible with the presence of spontaneous electric
larization. However, in the presence of deformation break
the up-down symmetry, a dipole moment can be develop
For symmetry reasons, of the three elementary deformat
only the splay and bend ones can be coupled with polar
tion, according to the linear relationship

P5esn~“•n!1eb~“3n!3n. ~1!

This behavior was predicted more than 30 years ago
Meyer @1#, who, recognizing the analogy with the phenom
enon occurring in crystals, called it piezoelectricity. Later o
the nameflexoelectricitywas adopted@2#, the coefficientses
andeb being denoted as flexoelectric coefficients.

The microscopic origin of flexoelectricity was devised
Meyer in the simultaneous presence of shape and elect
polarity in molecules. The mechanism can be easily gras
by considering the exemplar cases of wedge- and cresc
shaped molecules, respectively, with longitudinal and tra
versal dipoles, as sketched in Fig. 1. In the presence of s
and bend distortions, respectively, the alignments para
and antiparallel to the director are made inequivalent
short-range interactions, in such a way that the molec
orientations that fit to the molecular shape are favored.
same idea is at the basis of the works by Helfrich@3# and
Petrov and Derzhanski@4#, who, using phenomenological ap
proaches, could estimate the flexoelectric coefficients
simple prototypical asymmetric bodies.

Actually, the presence of steric and electric polarity is n
a necessary requirement for flexoelectricity, as was sugge
by Prost and Marcerou@5#, who envisaged a different mecha
nism in the gradient of the quadrupolar density. Thus, eve
the case of nonpolar molecules characterized by nonp
ordering with respect to the local director, spontaneous
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larization can arise as a consequence of the phase inho
geneity associated with director distortions.

General approaches that were based on different mo
for the intermolecular interactions, and were therefore abl
take into account both kinds of mechanisms, were also p
sented: they go from the Onsager-like theory of Straley@6# to
the molecular-field model formulated by Osipov@7#, consid-
ering both attractive and repulsive short-range interactio
and the density-functional methods developed by Singh
Singh @8# and by Somoza and Tarazona@9#. More recently,
also Monte Carlo simulations for nematic@10# and smectic
@11# phases have been reported, whereby wedge-shaped
ecules are modeled by combining Lennard-Jones and G
Berne potentials.

So, it can be stated that the general features of flexoe
tricity are now understood, and estimates of thees and eb
coefficients for prototype objects with the idealized shapes
cones and bent rods, having dipole moments parallel
perpendicular to the axis of alignment, respectively, can
obtained. On the other hand, no predictions are provided
the available theories for the flexoelectric behavior of r
molecules, and only rather vague considerations can
drawn from the magnitude and direction of the dipole m
ments and from the similarity between the structures a

FIG. 1. Flexoelectric polarization according to the Meyer mod
~dipolar contribution!.
©2001 The American Physical Society10-1
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ALBERTA FERRARINI PHYSICAL REVIEW E64 021710
simple geometrical objects. Experimental measurement
flexoelectric coefficients, which have been performed w
various methods, have also been of no great help, becau
the ambiguity of the available results@12#. General agree-
ment only exists about the order of magnitude of the fle
electric coefficients, which range from a few to tens of pC/
This makes them worth being taken into account in
analysis of electrostructural and electro-optic effects. A
other point of interest in flexoelectricity derives from r
cently discovered linear electro-optic effects that exploi
@13#. All this points to the need for a better insight into th
correlation between the molecular structure and the fle
electric behavior.

The present work is motivated by the desire to mak
contribution in this direction. So, a mean-field treatment h
been set up, based on a continuum description of defor
tions in the mesophase, together with a phenomenolog
model for the coupling of the probe molecule and the dir
tor field, in terms of surface interactions between the m
ecule and the surrounding nematic. Such a mean field, w
bears a formal analogy with the model for the anchoring f
energy of macroscopic surfaces@2,14#, is intended to accoun
for the anisotropy of the short-range intermolecular inter
tions, which strongly depends on the molecular shape.
peculiar feature of the method is its ability to take into a
count the details of the chemical structure, entering thro
the molecular surface in the mean-field potential. The the
presented here is an extension to nematics with splay
bend deformations of an approach that has already been
cessfully used to predict the dependence on the molec
structure of the orientational order parameters in nema
@15–17#, of the helical twisting power of chiral dopants@18–
20#, and of thermodynamic properties at the nema
isotropic transition@21#.

In the next section, the theory will be presented. Then
results obtained for some representative compounds wil
reported, i.e., the well-studied mesogenic syst
N-~p-methoxybenzylidene!-p8-butylaniline~MBBA ! @22–27#
and a typical azodye, belonging to a class of molecu
which have attracted some interest because the chang
shape associated with thecis-transphotoisomerization is ex
pected to have strong effects on the flexoelectric beha
@28–31#.

II. THEORY

In the framework of the surface interaction model@15–
17#, it is assumed that each surface elementdSof a molecule
in the nematic phase tends to orient its normals perpendicu-
lar to the local directorn, according to the simple mean-fiel
potential,

dU5kBT«P2~n•s!, ~2!

where P2 is the second Legendre polynomial and« is a
temperature-dependent parameter expressing the streng
the orienting interaction. The orientational behavior of t
molecule is determined by the sum of contributions deriv
from all surface elements,
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U~V!5kBT«E
S
dS P2~n•s!, ~3!

where the integral is performed over the molecular surfa
The mean-field potentialU depends on the molecular orien
tation, specified by the Euler anglesV5(a,b,g) describing
the rotation from the laboratory to the molecular frame.

In deformed nematics, the director is a function of t
space position. Thus, the mean field experienced by the
face elementdSdepends not only on its orientation, but als
on its position. In order to make this dependence explicit,
us consider two points, identified by the vectorsR0 and R
5R01r . If the distancer is much smaller than the lengt
scale of the deformation, the position dependence of
nematic directorn can be approximated as

n~R!.n~R0!1(
I ,J

eJ~“ I
R0nJ!r I , ~4!

where the labelsI,J, denote the reference axes(X,Y,Z)of the
laboratory frame,eJ is a unit vector parallel to theJth axis,
and“ I

R0 indicates theI components of the gradient taken
R0. If Eq. ~4! is substituted into Eq.~2!, at first order in the
displacementr the following expression is obtained for th
mean field experienced by a surface element inR:

dU5kBT«H P2~n•s!13~n•s!(
I ,J

nJ,I r IsJJ
5kBT«H P2~n•s!13 (

I ,J,K
nKnJ,I r IsJsKJ , ~5!

wheren5n(R0) and nJ,I5“ I
R0nJ . It is now convenient to

consider a molecular frame; the mean field experienced b
molecule with the origin of this frame inR0 is obtained by
integrating Eq.~5! over the whole molecular surface:

U~R0 ,V!5kBT«H E
S
dS P2~n•s!

13 (
I ,J,K

nKnJ,IE
S
dS rIsJsKJ , ~6!

wherer is the vector position of the surface elementdSin the
molecular frame.

Using this mean field, it is possible to calculate the ele
tric polarization of deformed nematics, given the charge d
tribution r(r 8) of the constituent molecules. The polarizatio
P(R0) can be expressed by a multipolar expansion@32#:

P~R0!5NH K E dr 8r~r 8!r 8L 2~1/2!“R0
• K E dr 8r~r 8!r 8

^ r 8L 1•••J , ~7!

whereN is the number density and the angular brackets
note orientational averages:
0-2
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SHAPE MODEL FOR THE MOLECULAR . . . PHYSICAL REVIEW E64 021710
^•••&5E dV f ~R0 ,V!•••, ~8!

f (R0 ,V) being the orientational distribution function inR0,
defined as

f ~R0 ,V!5
exp@2U~R0 ,V!/kBT#

*dV exp@2U~R0 ,V!/kBT#
. ~9!

This distribution function can be expanded about its va
for undeformed nematics, and for small deformations the
pansion can be truncated at the term linear in the defor
tion:

f ~R0 ,V!. f 0~V!H 123« (
I ,J,K

nKnJ,IE
S
dS rIsJsKJ ,

~10!

where

f 0~V!5
exp@2U0~V!/kBT#

*dV exp@2U0~V!/kBT#
~11!

and

U0~V!5kBT«E
S
dS P2~n•s! ~12!

are the distribution function and the mean field in the un
formed nematic phase. If the molecular charge distributio
approximated as a set of point chargesr(r 8)5(aqad(r 8
2ra) and only the first two terms of the multipolar expa
sion, corresponding, respectively, to the dipolar and the q
drupolar contribution, are retained, Eq.~7! can be rewritten
as

P~R0!.NH(
a

qa^ra&2~1/2!(
a

qa“
R0
•^ra

^ ra&J .

~13!

At first order in the deformation, we can write

^ra&.23« (
I ,J,K

nKnJ,IE
S
dŜ rar IsJsK&0 , ~14!

where the zero apex indicates the average with respect to
undeformed distribution function Eq.~11!, and the relation
^ra&050 has been used. Correspondingly, in the quadrup
contribution of Eq.~13!,

“

R0^ra
^ ra&5E dV@“R0f ~V!#•ra~V! ^ ra~V!,

~15!

the gradient can be approximated as

“ I
R0f ~V!.23« f 0~V!(

J,K
nKnJ,IE

S
dS$sJsK2^sJsK&0%.

~16!
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The last term on the right-hand side of Eq.~16! vanishes, as
can be seen by considering that~i! in a laboratory frame with
an axis parallel to the undeformed director^sJsK&0

5^sJ
2&0dJK , and~ii ! the constant magnitude of the vectorn

implies nKnK,I50. Therefore, we can write

“

R0^ra
^ ra&.23« (

I ,J,K
nKnJ,IE

S
dŜ rar I

asJsK&0 .

~17!

By substituting Eqs.~14! and~17! into Eq. ~13!, the follow-
ing expression for the flexoelectric polarization is obtaine

P523N« (
I ,J,K

nKnJ,I (
a

qaE
S
dS$^rar IsJsK&02~1/2!

3^rar I
asJsK&0%. ~18!

The surface integrals on the right-hand side of this equa
depend on the location of the origin of the molecular fram
this means that dipolar and quadrupolar contributions to
flexoelectric polarization cannot be unambiguously iden
fied. However, it can be seen that the sum of the two con
butions, and therefore the total polarization, is invariant w
respect to a shift of the origin~see Appendix A!.

To derive the explicit expression for the flexoelectric c
efficients, it is convenient to take a laboratory frame with t
Z axis parallel to the local director inR0(Zin). In this frame,
the splay and bend deformations can be expressed as

s5sZ5nZ~nX,X1nY,Y!,

bX5nZnX,Z , ~19!

bY5nZnY,Z ,

which are, respectively, parallel and perpendicular to the
rector. Therefore, the components of the flexoelectric po
ization can be expressed as

Ps5PZ5sZes ,
~20!

Pb5PX1PY5~bX1bY!eb ,

with the flexoelectric coefficientses andeb defined as

es523N«(
a

qaE
S
dS$^r Z

ar XsXsZ&02~1/2!^r Z
ar X

asXsZ&0%

523N«E
S
dS$^mZr XsXsZ&02^QZXsXsZ&0%,

~21!

eb523N«(
a

qaE
S
dS$^r X

ar ZsXsZ&02~1/2!^r X
ar Z

asXsZ&0%

523N«E
S
dS$^mXr ZsXsZ&02^QZXsXsZ&0%,
0-3
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ALBERTA FERRARINI PHYSICAL REVIEW E64 021710
where m and Q are, respectively, the electric dipole an
quadrupole tensors, with elementsm I5(aqar I

a and Q IJ

5(1/2)(aqar I
ar J

a @32#.
It is customary to deal with the sum and difference of t

flexoelectric coefficients:

es2eb523N«(
a

qaE
S
dS$^r Z

ar XsXsZ&02^r X
ar

Z
sXsZ&0%

523N«E
S
dS$^mZr XsXsZ&02^mXr ZsXsZ&0%,

~22!

es1eb523N«(
a

qaE
S
dS$^r Z

ar XsXsZ&0

1^r X
ar ZsXsZ&02^r X

ar Z
asXsZ&0%

523N«E
S
dS$^mZr XsXsZ&01^mXr ZsXsZ&0

22^QXZsXsZ&0%,

where the former is only determined by the dipolar contrib
tion, so it vanishes for nonpolar molecules, while the lat
depends on both dipolar and quadrupolar terms. For the
sons seen above, both flexoelectric coefficients as wel
their linear combinations are independent of the choice of
origin of the molecular frame.

Equations~21! and ~22! show how the flexoelectric re
sponse is determined by the coupling of electrostatic
geometric properties of the molecules. The role of the m
lecular geometry appears even more clearly if the mean-fi
equation~6! is expressed in terms of irreducible tensor co
tributions, as shown in Appendix B. Such a reformulation
the problem is also useful to highlight the connection b
tween the present approach and previous works@15,18#,
where the same basic assumptions adopted here to eva
the flexoelectric effect were used to model the orientatio
order of molecules or the helical twisting power of chir
dopants in liquid crystals.

It appears from Eqs.~21! and ~22! that, in contrast with
simple theories, neitheres1eb nor es2eb has a simple de-
pendence on the orientational order parameters, since bo
them depend on order parameters of various ranks. Actu
things are even more complex, since the mesogenic m
ecules and, more generally, the molecules producing sig
cant flexoelectric effects are usually fairly large and flexib
Therefore, the measured polarization cannot be simply a
ciated with a single molecular structure, but it correspon
rather to the average over the conformational distribution
for the sake of simplicity, a discrete distribution over a fin
number of conformers is considered, we can write

es~b!5(
n

es~b!
n pn, ~23!

where the apex indicates thenth conformer andpn is its
statistical weight:
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pn5
exp@2U tors

n /kBT#*dV exp@2U0
n~V!/kBT#

(nexp@2U tors
n /kBT#*dV exp@2U0

n~V!/kBT#
,

~24!

U tors
n and U0

n(V) being, respectively, the torsional potenti
deriving from intramolecular interactions and the mean fi
experienced in undeformed nematics defined in Eq.~12!,
both evaluated for thenth conformer. The mean-field contri
bution has a magnitude of the order of some kJ mol21; it
stabilizes the more elongated structures and has compa
values for conformers with similar shapes. Therefore, it c
only produce small differences in the statistical weightspn.
On the contrary, large differences can arise from the torsio
potential when strong intramolecular interactions occur
some of the conformers.

III. RESULTS AND DISCUSSION

As an application of the model, the flexoelectric coef
cients of some typical systems have been evaluated. The
lecular ingredients of the calculations are the surface and
charge distribution, which is described in terms of po
charges located at the nuclear positions. In the case of
tems with internal degrees of freedom, both have to be
rived for each of the stable conformers. The use of accu
geometries is a major requirement in order to get relia
predictions since, as we shall see below, the flexoelec
behavior depends on the details of the molecular shape
the present case,ab initio methods were used, as imple
mented in the packageGAUSSIAN 98 @33#. In particular, ge-
ometry optimization was performed at the HF/6-31G* level,
and then charges were obtained by applying to the optimi
structures the Merz-Kollmann-Singh scheme@34#, whereby
charges are derived by fitting the electrostatic potential
the molecular surface. The rolling sphere algorithm, in
implementation by Sanner and co-workers@35#, was used for
the molecular surface. Therefore, this is defined as the
face drawn by a sphere of given radius rolling over the
sembly of van der Waals beads centered at the atomic p
tions @36,16#. In the calculations, standard van der Waa
radii were taken@37#, and a rolling sphere radius equal to
Å was assumed, a sensible value to mimic the surface ac
sible to the solvent.

Scaled flexoelectric coefficients will be reported in t
following, denoted ases* andeb* , and defined as

es~b!
* 5

1

N
es~b! . ~25!

They will be expressed in the unitse Å 2, e being the elec-
tron charge; therefore, the relation between scaled and
flexoelectric coefficients, expressed in SI units, can be
proximated as

es~b! ~pC m21!'
1000

v ~cm3 mol21!
es~b!
* ~e Å 2!, ~26!

wherev is the molar volume of the nematic phase.
0-4
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SHAPE MODEL FOR THE MOLECULAR . . . PHYSICAL REVIEW E64 021710
The temperature dependence of the mean-field, Eq.~3!,
and then of the flexoelectric coefficients is contained in
orienting strength parameter«. This has been simply mod
eled according to the Maier-Saupe theory@38#: the orienting
strength of the nematic phase is only a function of the or
parameter of the nematogenic molecules,P2

N, and of the
nematic-isotropic transition temperature,TNI. Thus, the ex-
pression for« can be obtained from a comparison of t
Maier-Saupe potentialUMS52«0(P2

NTNI)P2(cosb), where
«056.26310223 J K21, with the surface interaction poten
tial Eq. ~3!. Under the approximation of a nematic made
rigid uniaxial molecules, the latter can be rewritten asU
52kBT«TN

20P2(cosb), whereTN
20 depends on the anisom

etry of the surface of the nematogenic molecules@15,16#;
therefore, the expression

«5«0P2
N/kBT* TN

20 ~27!

is obtained, with the reduced temperatureT* 5T/TNI.
As a first example, we shall consider the nematoge

system MBBA, N-~p-methoxybenzylidene!-p8-butylaniline,
whose flexoelectric coefficients were experimentally de
mined with various methods, leading to often contradicto
results@22–27#. A nonplanar structure of the central core w
obtained from geometry optimization, with a dihedral ang
of about 40° between the planes containing the Ph-CH-N
the Ph-N groups, in agreement with theoretical and exp
mental findings. The four conformers shown in Fig. 2 we
considered, differing in the values of the dihedral angles
fining the orientations of the OCH3 group ~on either side of
the attached phenyl ring! and of thet-butyl chain~above and

FIG. 2. Structure of the four conformers considered for MBB
with the calculated dipole moments, orientational order parame
and scaled flexoelectric coefficients.
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below the linked phenyl ring! @39#. The t-butyl chain was
taken in the all-trans conformation, since only minor effect
were observed with other conformations. As can be s
from the figure, where also the surface is shown, none of
four conformers has a definite wedge or crescent sha
therefore simple considerations based on the behavior of
totypical objects would be completely inappropriate f
MBBA. Figure 2 also reports the dipole moments of the fo
conformers, together with the flexoelectric coefficients a
order parameters calculated with«50.041 Å22. The order
parameters correspond to the principal axes of the orde
Saupe matrix, labeled in such a way thatSyy ~,0!
,Sxx,Szz ~.0!. It can be seen that the dipole moments
the two conformers 1-2~with the O–CH3 and CH–N bonds
on the same side! are less than one-third of those calculat
for the conformers 3-4~having the O–CH3 and CH–N bonds
on opposite sides!. Therefore, it is not surprising to see th
the conformers 1 and 2 have similar flexoelectric coe
cients, with a negligible dipolar contribution. On the co
trary, the flexoelectric coefficients of the two other conform
ers are rather different, and show that the presence o
strong dipole moment is not sufficient to guarantee a sign
cant dipolar contribution to the flexoelectric polarization. A
tually, enhancement of the latter requires the matching
steric and electrostatic polarities. Analogies and differen
between the various conformers also appear from Figs.~a!
and 3~b!, which showes* 2eb* andes* 1eb* as a function of
the reduced temperature. The temperature dependence o
orienting strength« is determined according to Eq.~27!, with
TNI5320 K andTN

20575 Å2, values appropriate for MBBA.
The flexoelectric coefficients of MBBA can be calculate
from the scaled ones ases(b) ~pC m21)'4es(b)* (e Å 2). The
comparison with experimental data is not obvious beca
the reported values are spread over a wide range@12#. How-
ever, there seems to be some agreement about the fac
es1eb is negative, with values of the order of215 to 230
pC/m, which decrease with a lowering of the reduced te
perature@12#. The available data fores2eb are scarcer; a
positive value is reported, much smaller in magnitude th
the sumes1eb . The theoretical values to be compared w
the experimental data should be obtained by averaging o
all possible conformers, according to Eq.~23!. Therefore, in
our case we should consider, for each of the four isom
mentioned so far, all the possible conformers correspond
to one or moregauchebond in the alkyl chain. However, th
introduction ofgauchebonds does not change dramatica
the molecular shape of MBBA, while it increases its to
sional potential by at least 3 kJ mol21 @39#, thus lowering its
statistical weight. Therefore, only the four conformers w
all-trans chains will be considered, which have similar st
tistical weights, being characterized by the same torsio
potential and comparable mean-field potentials. In the c
of the sumes1eb , all contributions are negative in sign an
with the exception of conformer 3, they are increasing fun
tions of temperature; the average value, calculated accor
to Eq. ~23! and displayed in Fig. 3~a!, is also negative and
ranges from28 to 212 pC/m, in acceptable agreement wi
the experimental behavior. Less satisfactory seems to be

rs,
0-5



gi
ue

th
s,
re
ua

of
d.
si

u

in
-
t
g

th
in

re,
nts
rs.
re-
NI

d in
by

es.
go

s of
ith

the

u-

as

fi-
as

ye.

n-

he
ely.
the
er
the

-
atic
s

the-

ly,
le
g-
or
nd
s a
to a
the
e
are
nd
l to

2,3

This
them

in

ALBERTA FERRARINI PHYSICAL REVIEW E64 021710
comparison for the differencees2eb , which is predicted to
be negative (es2eb'21 to 23 pC/m!. However, it should
be considered that such a result is obtained by avera
contributions of opposite signs; this leads to a low val
significantly lower in absolute value than that ofes1eb , in
agreement with experiment. Probably in cases of this sort
extension of the average to a larger number of conformer
addition to a detailed knowledge of the molecular structu
in the nematic phase, might be required to improve the q
ity of the predictions.

As a second example, the molecule
4-hexyloxy-~48-hexyl!azobenzene will be considere
Azodyes of this kind have recently been taken under con
eration because the bent shape of thecis conformer obtained
by photoisomerization seems to be appropriate to prod
strong flexoelectric effects @28–31#. For
4-hexyloxy-~48-hexyl!azobenzene, the ratio (es2eb)/K,
whereK is the average elastic constant, was measured
mol % mixtures in E7~a commercial mixture of alkylcyano
biphenyls @40#!, and negative values were observed bo
with and without uv irradiation, with a 40% increase in ma
nitude undertrans-cisphotoisomerization@30#. In this case,
for a strict comparison with the experimental results
flexoelectric coefficients should be calculated by summ

FIG. 3. Sum~a! and difference~b! of the scaled flexoelectric
coefficients calculated with the four conformers of MBBA shown
Fig. 2. Solid lines are used for the average values.
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the contributions from all the species present in the mixtu
i.e., the two forms of the azodye and the various compone
of the nematic solvent, each with all its relevant conforme
Moreover, a complete analysis of the experiment would
quire the prediction of the composition dependence of the
transition temperature and of the elastic constants, an
particular their change under photoisomerization, again
taking into account the contributions from all the speci
Such an analysis, beside being extremely costly, would
beyond our present purpose of simply providing estimate
the change in the flexoelectric coefficients associated w
the change in the molecular geometry occurring in thecis-
trans isomerization. Therefore, we have considered only
flexoelectric coefficients of the azodye, in itscis and trans
forms, calculated under the approximation of infinite dil
tion. Thus the interaction strength parameter« is determined
according to Eq.~27!, with TNI5330 K, the transition tem-
perature of pure E7, andTN

20578 Å2; with these choices, the
dependence of« on the reduced temperature is the same
that predicted for MBBA~see above!. The contribution of
4-hexyloxy-~48-hexyl!azobenzene to the flexoelectric coef
cients of the E7-azodye mixture can be approximated
es(b) (pC m21)'4xes(b)* (e Å 2), wherex andes(b)* are the
mole fraction and the flexoelectric coefficients of the azod

As in the case of MBBA, also for
4-hexyloxy-~48-hexyl!azobenzene only the most stable co
formers have been considered, with all-trans alkoxy and
alkyl chains lying in all possible ways on the plane of t
attached aromatic ring and perpendicular to it, respectiv
The four and two conformers obtained, respectively, for
cis and thetrans isomers are shown in Figs. 4 and 5, togeth
with their dipole moments, the order parameters, and
scaled flexoelectric coefficients calculated with«
50.041 Å22. For the trans isomers, the optimized geom
etry corresponds to a planar arrangement of the arom
core, while in the case of thecis ones, distorted structure
were obtained, with the dihedral angleC–N–N–C'5°, and
phenyl rings rotated by'55° with respect to the N-N-C
plane, in agreement with the reported experimental and
oretical values@41#. The trans isomers have a relatively
small dipole moment and a rodlike shape. According
flexoelectric coefficients not particularly high, comparab
with those obtained for MBBA, are predicted for them. Si
nificantly higher flexoelectric coefficients are predicted f
the cis isomers, which have larger dipole moments a
shapes with definite polar asymmetries. In particular, a
consequence of their shapes, the conformers 1 and,
lesser extent, 4 have a propensity to align their dipoles to
director~wedgelike behavior!. On the contrary, a crescentlik
behavior is predicted for the conformers 2 and 3, which
elongated in the direction perpendicular to the dipole, a
are then expected to preferentially orient the dipole norma
the director. Correspondingly, largees* and eb* values are
predicted, respectively, for the 1,4 conformers and for the
ones. In comparingcis and trans isomers, it can also be
noted that the latter have much higher order parameters.
is a consequence of their elongated shape, which makes
fit very well into the nematic phase. Figure 6~a! shows the
temperature dependence of the sumes* 1eb* : relatively small
0-6
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values, comparable with those obtained for MBBA, a
negative in sign, are predicted for thetrans isomers, while
high and positive values are obtained for thecis structures.
Considering now the differencees* 2eb* , whose temperature
dependence is shown in Fig. 6~b!, we see that it is small for
the trans conformers, as a consequence of the small sh

FIG. 4. Structure of the fourcis conformers considered fo
4-hexyloxy-~48-hexyl!azobenzene, with the calculated dipole m
ments, orientational order parameters, and scaled flexoelectric
ficients.

FIG. 5. Structure of the twotrans conformers considered fo
4-hexyloxy-~48-hexyl!azobenzene, with the calculated dipole m
ments, orientational order parameters, and scaled flexoelectric
ficients.
02171
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and charge polarity. Much higher values are predicted for
cis conformers, positive and negative for the crescent- a
the wedge-shaped molecules, respectively. The averagetrans
and cis values, calculated according to Eq.~23!, are both
negative and fall in the ranges21 to 23 pC/m ~trans! and
21.5 to 26 pC/m ~cis!. A direct comparison with the data
reported in Ref.@30# , that is, the ratio (es2eb)/K measured
for pure E7 and for E7 doped with the azodye before a
after uv irradiation, cannot be made because the experim
tal results depend not only on the different flexoelectric
sponse of the two isomers, but also on the isomeriza
yield and on the change of ordering and elastic consta
associated with the photoisomerization process. The for
might be only a minor problem since the conversion is like
to be almost complete, but there is much more uncerta
about the latter contributions. At most, we can guess t
they should have opposite effects on the ratio (es2eb)/K,
since thetrans→cis isomerization is accompanied by a d
crease of the NI transition temperature@42#, and thus a de-
crease of ordering and probably a decrease of the ave
elastic constant. Thus, considering that the comparison
tween theoretical results and the experimental data repo
in Ref. @30# cannot go beyond the qualitative level, we c

ef-

ef-

FIG. 6. Sum~a! and difference~b! of the scaled flexoelectric
coefficients calculated with the six conformers
4-hexyloxy-~48-hexyl!azobenzene shown in Figs. 4 and 5. So
lines indicate the average values forcis and trans isomers.
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conclude that a general agreement is found: the meas
and predicted difference of flexoelectric coefficients is ne
tive in sign for both thetrans and thecis isomers, and sig-
nificantly larger in magnitude for the latter. Finally, it
worth mentioning that the flexoelectric coefficients repor
here for 4-hexyloxy-~48-hexyl!azobenzene strongly depen
on the chemical structure, and cannot be immediately ge
alized to any azodye. Indeed, significant effects on the fle
electric behavior are predicted not only for a shortening
the flexible chains, in which case a weaker flexoelectric
sponse is estimated, but also for a small chemical modifi
tion such as the insertion of an oxygen atom between
phenyl ring and the alkyl chain. This agrees with the indic
tions derived from experiments, from which a nontrivial d
pendence on the details of the chemical structure can be
ferred @31#.

IV. CONCLUSIONS

In this work, a molecular theory for the flexoelectric e
fect in nematics has been presented that, adopting a sim
mean-field picture, is intended to take into account in a re
istic way the relevant molecular features. The model ha
be seen in the more general framework of a theoretical
proach aimed at correlating molecular structure with or
and macroscopic properties of mesophases, which ha
ready been shown to provide reliable estimates of orie
tional order parameters and transition properties of nem
phases, as well as the helical pitch of twisted nematics@15–
20#.

As an application of the model, the flexoelectric coef
cients of some typical systems have been calculated
function of the molecular structure, which enters through
molecular surface and charge distribution, by explicitly co
sidering, when required, the presence of several conform
In this way, a detailed analysis of the flexoelectric behav
and its dependence on the molecular properties can be
formed. Comparison with experimental data, when availa
shows that the magnitude of the effects is correctly predic
Therefore, it is hoped that the approach presented here
be of some help to shed light on the molecular origin of
flexoelectric response and, therefore, to optimize mater
for its exploitation.
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APPENDIX A

In order to demonstrate that the total polarization is
variant for a shift of the origin of the molecular frame, let
take the translationO0→O, so thatra5ra01Dr and r5r0

1Dr ; then we can write
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(
a

qa^r M
a r IsJsK&05(

a
qa^r M

a0r I
0sJsK&0

1(
a

qa^r M
a0Dr IsJsK&0 , ~A1!

(
a

qa^r M
a r I

asJsK&05(
a

qa^r M
a0r I

a0sJsK&0

1~1/2!(
a

qa^Dr Mr I
a0sJsK&0

1~1/2!(
a

qa^r M
a0Dr IsJsK&0 ,

~A2!

which have been derived by exploiting the relation(aqa
50, which holds for neutral molecules. By using the relati
between the components in the laboratory frame$X,Y,Z%
and those in a molecular frame$x,y,z% coincident with the
principal frame of the tensors^ s, v I5( ieiI (V)v i , where
eiI is the component of theIth laboratory axis along theith
molecular axis, the following equalities result:

^Dr Mr I
a0sJsK&05 (

m,i , j
r m

a0Dr isjsj^emMeiI ejJejK&0

5(
m, j

r m
a0Dr msjsj^emMemIejJejK&0

5^Dr I r M
a0sJsK&0 , ~A3!

where the local axial symmetry of the phase has been ta
into account. Therefore, Eq.~A2! can be rewritten as

(
a

qa^r M
a r I

asJsK&05(
a

qa^r M
a0r I

a0sJsK&0

1(
a

qa^r M
a0Dr IsJsK&0 , ~A4!

from which it follows that the difference between the tw
contributions Eqs.~A1! and ~A2! is invariant for a shift of
the origin of the molecular frame.

APPENDIX B

The integrand in the second term on the right-hand side
Eq. ~6! is the contraction of the third-rank tensors“^ n^ n
and r ^s^s, and it can be expressed as a linear combinat
of the invariants obtained by combining the irreducible pa
of the two tensors. The reformulation in terms of irreducib
tensors helps to make clear the connection of the pre
result with previous works based on the same assumptio
surface interactions@15,18#.

The third-rank tensora^b^c can be decomposed in on
zero-rank, three first-rank, two second-rank, and one th
rank irreducible tensor. The form of the resulting irreducib
tensors depends on the vector coupling scheme. The exp
0-8
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sions obtained by first couplingb and c and thena are re-
ported in Table I. The following notation is used:n vertical
dots indicate contraction with respect ton indeces,3 and ^

refer to vector and tensor products, respectively,I2 is the unit
tensor of second rank, withI i , j5d i , j , andS$•••% denotes the
symmetrized form of a tensor,S$T% i jk5(1/6)(Ti jk1Tik j

1Tki j1Tk ji1Tjki1Tjik). Finally, the symbollT(L) is used
for the irreducible tensor of rankL obtained by coupling a
first-rank tensor with an irreducible tensor of rankl deriving
from the coupling of two first-rank tensors. The contracti
of the two third-rank Cartesian tensors

I5a^ b^ c:d^ e^ f5 (
I ,K,J

aIbJcKdIeJf K ~B1!

can be rewritten in terms of its irreducible components

I5(
lL

l~a^ b^ c!~L !
]l~d^ e^ f!~L !

5 (
l50

2

(
L5ul21u

l11

(
I

l~a^ b^ c! I
~L !* l~d^ e^ f! I

~L ! .

~B2!

When the expressions for the irreducible tensors~Tables
II and III! are used and the originO of the molecular frame
is set in the point defined by the relation

E
S
dS r50, ~B3!

TABLE II. Irreducible tensors obtained from the third-rank te
sor r ^s^s.

l L lT(L)

1 0 0
0 1 2(1/A3)r
1 1 0
2 1 A3/5@(1/3)r2(s•r )s#
1 2 0
2 2 (ı/A6)@s^ (s3r )1(s3r ) ^ s#
2 3 S$r ^ s^ s%2(1/5)S$@r12(r•s)s# ^ I2%

TABLE I. Irreducible tensors obtained from the third-rank te
sor a^b^c.

l L lT(L)

1 0 2( i /A6)a•(b3c)
0 1 2(1/A3)a(b•c)
1 1 (1/2)@(a•b)c2(a•c)b#

2 1 A3/5@(1/3)a(b•c)2(1/2)(a•c)b2(1/2)(a•b)c#

1 2 (ı/2A2)$(b3c) ^ a1a^ (b3c)2(2/3)@a•(b3c)#I2%
2 2 (ı/2A6)@b^ (c3a)1(c3a) ^ b2c^ (a3b)2(a3b) ^ c#

2 3 S$a^ b^ c%2(1/5)S$@(a•b)c1(a•c)b1(c•b)a# ^ I2%
02171
Eq. ~6! can be rewritten as

U~R0 ,V!5kBT«H ~3/2!n•E
S
dS@s^ s2 1

3 I2#•n1~9/10!

3$~“•n!n1@~“3n!3n#%•E
S
dS s~s•r !

1~1/2!$~n3“ !1~“3n!%•E
S
dS@s^ ~s3r !

1~s3r ! ^ s#•n13„S$“^ n^ n%

2~1/5!S$@n•~“^ n!1~“•n!n1~“^ n!•n#

^ I2%…]„S{ r ^ s^ s} 2~1/5!S$@r12~r•s!s#

^ I2%…J . ~B4!

According to previous work, we shall define the second-ra
surface tensorT, accounting for the shape anisometry of t
molecular surface@15#:

T52
1

A6
E

S
dS@3s^ s2I2#, ~B5!

and the second-rank chirality pseudotensorQ, which de-
scribes the helicity of the molecular surface@18#:

Q5A 3
8 E

S
dS@s^ ~s3r !1~s3r ! ^ s#. ~B6!

Here we shall introduce the first-rank tensorII :

II 5 9
10 E

S
dS s~s•r !, ~B7!

which will be denoted as a polarity tensor since it provide
measure of the polarity of the molecular surface, and
third-rank tensorJ:

TABLE III. Irreducible tensors obtained from the third-rank te
sor“^n^n.

l L lT(L)

1 0 0
0 1 2(1/A3)(“^ n)•n
1 1 ~1/2!@2n•~“^n!1~“•n!n#

2 1 A3/5@(1/3)(“^ n)•n2(1/2)n•(“^ n)2(1/2)(“•n)n#

1 2
2 2 (ı/2A6)$n3“^ n1(n3“^ n)Tr2n^ (“3n)

2(“3n) ^ n%
2 3 S$“^ n^ n%2(1/5)S$@n•(“^ n)1(“•n)n1(“^ n)•n#

^ I2%
0-9
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J5E
S
dS„S$r ^ s^ s%2~1/5!S$@r12~r•s!s# ^ I2%….

~B8!

Then, Eq.~B4! can be rewritten as

U~R0,V!5kBT«ˆ2A3
2 n•T•n1$~“•n!n1@~“3n!

3n#%•II 1A2
3 $~n3“ !2~“3n!%•Q•n

13†S$“^ n^ n%2~1/5!S$@n•~“^ n!1~“•n!n

1~“^ n!•n# ^ I2%‡]J%. ~B9!

The position and orientation dependence of the mean fie
implicit in that of the directorn and the surface integrals
respectively. In the case of undeformed nematics“3n50
and“•n50, so that only the first term survives; the mea
field potential has the ‘‘surface tensor’’ form, used to pred
d
.

J.

t,

iq

iq

J
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the orientational order in nematic phases@15,21#. For twisted
nematics phases, characterized by“•n50 and (“3n)
52qn, wherep is the pitch andq52p/p is the wave vec-
tor, the expression adopted in the model for the helical tw
ing power of chiral dopants is recovered@18#.

By introducing the irreducible tensors defined so far in
Eqs. ~21!, the expressions for the flexoelectric coefficien
can be rewritten as

es523N«$^mZ)Z&01 1
5 @^mZJZZZ&023^mZJXXZ&0#

1A 2
3 ^QZXTXZ&0%,

~B10!

eb523N«$^mX)X&01A2
3 ^mXQYZ&01 1

5 @^mXJXXX&0

1^mXJXYY&024^mXJZZX&0#1A2
3 ^QZXTXZ&0%.
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